TRAFFIC IMPACT REPORT VILLAGE GREEN DISTRICT

HEBRON, CONNECTICUT

Prepared for: Horton Brothers, LLC

Prepared By:

F. A. Hesketh & Associates, Inc.

August 24, 2004

TRAFFIC IMPACT REPORT VILLAGE GREEN DISTRICT

HEBRON, CONNECTICUT

Prepared for: Horton Brothers, LLC

Prepared By:

F. A. Hesketh & Associates, Inc.

August 24, 2004

Hesketh

6 Creamery Brook • East Granby, CT 06026

F. A. Hesketh & Associates, Inc.

August 24, 2004

Mr. Jim Celio Century 21 27 Main Street Hebron, CT 06248

RE: Hebron Village

Route 66 – Hebron Our File: 02225

Dear Mr. Celio:

Pursuant to your request our office has completed a traffic impact analysis and report identifying the potential traffic impact of a proposed zone change of the Horton brothers parcel to the Village Green District Zone and the development of a 365,500 s.f. mixed use development and 123 residential housing units. We are herewith transmitting fourteen (14) copies of that report for submittal to the Town of Hebron. Under separate cover we will provide an additional nine (9) copies of the report for distribution to team members.

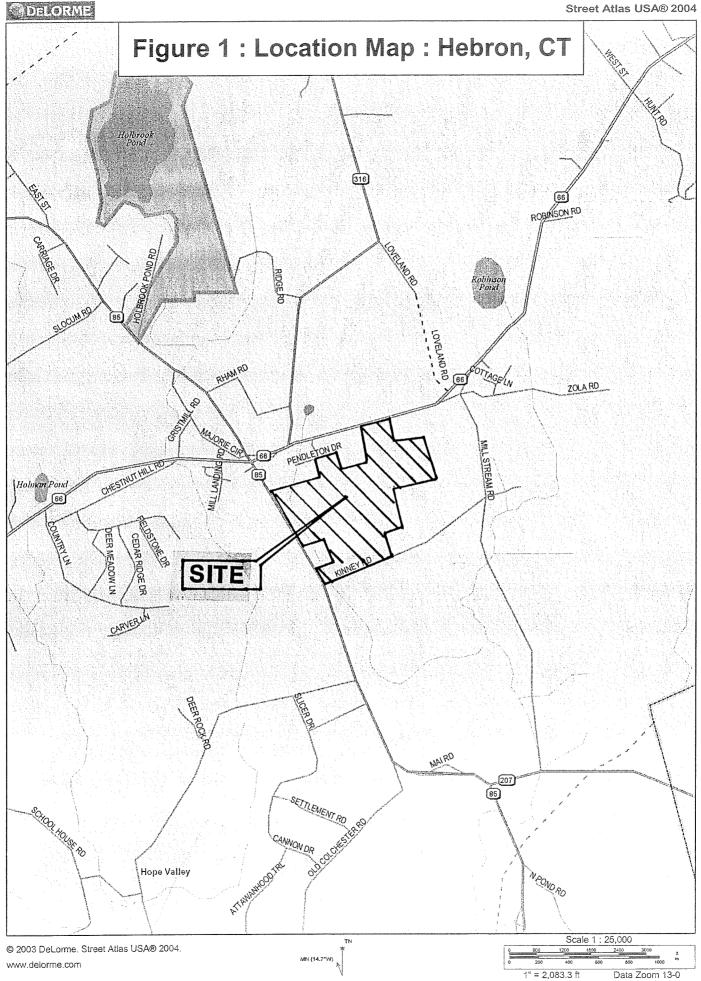
We appreciate the opportunity to provide this analysis to you. A representative from our firm will be available to present testimony before local planning agencies at your request. If you require any additional information regarding traffic related items, please do not hesitate to contact our office.

Sincerely.

F.A. Hesketh & Associates, In

Scott F. Hesketh.

Senior Traffic Engineer


Cc: Mr. Mark Friend

T:\pf\02225\jcel8244.lt1

	3		
and the second s			
1000			
to the state of			
ATT 1			

INTRODUCTION

Horton Brothers, LLC is proposing a mixed-use development for a parcel of land under the Village Green District Zone in Hebron, Connecticut. The property is located on the south side of Route 66 and east of Route 85 with frontage to both roadways. The proposed development includes 356,500 s.f. of floor area comprised of a mix of retail, office, and light industrial spaces as well as 123 residential units and recreational uses. Figure 1 shows the site with respect to the surrounding roadway network. This report documents the findings of a traffic study related to the impact of the proposed development on local and state highways as required for the Master Plan approval under the Hebron zoning regulations for the Village Green District. Since the site has direct frontage and access on state highways Route 66 and Route 85 and proposes over 100,000 s.f. of floor area, a certificate of operation must be obtained from the State Traffic Commission (STC) in addition to local approvals. This report is intended for the submission to local authorities for approvals and for the STC pursuant to the requirements of Section 14-311 of the Connecticut General Statutes, as amended. The report shall not be used for any other purpose.

SITE DESCRIPTION

The proposed development consists of a variety of land uses, buildings, and open space areas. All of the retail and most of the office use buildings are centered on the northwest section of the site and they include a 35,000 s.f. supermarket, 7,500 s.f. of restaurant, 51,000 s.f. of general retail, 133,000 s.f. of office space, including a new Town Hall facility. In addition, this area will also have a 35,000 s.f. fitness center. The retail and office buildings are located around an open market square in the center of the "village" area. Sidewalks, generally located behind the buildings and fronting to the town square, are provided to connect the buildings to the parking areas and to provide safe access for pedestrians. A total of 123 residential units including age restricted detached homes, attached elderly housing units, and single family homes will form communities along the south side of the parcel. A neighborhood park and community building/clubhouse will be located in the central area of the site with small apartment buildings and attached parking areas surrounding it. Recreational soccer and baseball playing fields, and tennis courts will be centrally positioned on the north side of the site. An area west of the fields and is set aside for 75,000 s.f. of light industrial or office use and associated parking. Walking trails for recreational use are proposed through several of the open areas of the site and sidewalks are proposed throughout the site building areas and along the entire length of the streets in order to improve safety for pedestrians and bicyclists. The trails and sidewalks have access to Route 85 at three locations, including near a small parking area for hikers. The sidewalk next to the main entrance boulevard provides pedestrian access to Route 66.

A total of 356,500 s.f. of buildings of mixed-uses and 123 residential units combined with areas of open space and recreational uses is proposed for the site. All of these uses are specified as acceptable uses in the zoning regulations for the Village Green District.

Vehicle access to the site is proposed by way of two new access points, one approaching Route 66 and the other approaching Route 85. The Route 66 entrance will be located opposite the IGA shopping plaza driveway. The Route 66 driveway will provide a minimum of 24 feet of pavement for each direction separated by a raised landscaped median. Further into the site the median will be wider and landscaped while the 24 feet of pavement on either side will remain, providing by-pass capability around left turning traffic in the heavier use retail/office areas. As the roadway continues west through the site to areas of lesser use the median is discontinued and the pavement width narrows, encouraging slower vehicle speeds. At the centrally located park and clubhouse, a roadway extending north through the site will provide access to industrial areas and parking for the proposed athletic fields.

The Route 85 access will be at the location of he existing Kinney Road intersection. Kinney Road will be reconfigured and relocated to approach the proposed site access roadway east of Route 85. It is proposed to maintain the single lane of approach to Route 85. The intersection is proposed to operate under signalized control. A third driveway on Route 85 currently providing access to a small existing 10-vehicle parking lot with direct access only to hiking trails will remain. Due to the small size of the lot and limited access to facilities, this driveway was not considered in the

distribution of site traffic. The two signalized driveways, one on Route 66 and one on Route 85, will be shown to provide adequate access and appropriate geometry for safe operations.

Parking on the site will be provided so that each land use has adequate parking easily accessible to the building or recreational area. Some of the buildings are located with access to larger shared parking areas. In addition, the roadway directly north and south of the market square will provide up to 40 feet of pavement, sufficient for on street parking.

DESCRIPTION OF AREA

Route 66 is a state maintained highway running generally in a northwesterly direction through several town centers from Interstate 691 in Meriden to Route 32 in Willimantic, with access to Interstate 91, Route 9, Route 2, and Route 6. In the area of the site Route 66 is also known as Main Street, and it provides approximately 38 feet of pavement with a single 13 to 15 foot lane and wide shoulder in each direction of travel. Additional turning lanes are provided as necessary. Signals are provided at the intersections with Route 85 and Route 316 in Hebron and further east at Route 87 in Columbia. The speed limit is posted at 35 miles per hour throughout the center of town and 45 miles per hour west of Route 85 and east of the IGA commercial plaza. Land uses in the area include commercial, retail, financial and other service businesses, residential uses, the town green and a church. Continuing east toward Route 87, land uses include single family homes, farms, and a hunting range. Passing is permitted along some portions of Route 66 outside of the town centers.

Route 85 is a state maintained highway that originates at Route 44 in Bolton and extends southerly through Hebron to New London. In the vicinity of the site Route 85 provides 12 foot wide travel lanes and shoulders of varying widths. Land uses in the area are predominantly residential and the Hebron Elementary School is located between Route 66 and Kinney Road. The speed limit along Route 85 is posted at 45 miles per hour in some areas and 50 miles per hour in others. The school zones are posted at 30 miles per hour and the approaches to Route 66 at 35 miles per hour.

Route 316 is a state maintained highway that originates at Route 66 and extends northerly to its terminus at Route 6 in Andover. Route 316 provides approximately 22 feet of pavement width including two 10 ½ foot lanes and shoulders about ½ foot wide. The approach lane at Route 66 widens to 12 feet with a 2 foot wide shoulder. The roadway is posted at 35 miles per hour except near the middle school and high school, where the speed limit is reduced to 25 miles per hour. Uses in the area along Route 316 include the local schools, the Veteran's Memorial Park, single family homes, and some commercial uses located in the vicinity of Route 66.

Route 87 is a state maintained highway that originates at Route 2 in Norwich and extends northerly to Route 6 in Andover. In the vicinity of Route 66 the roadway generally provides approximately 25 to 26 feet of pavement with two 12 foot wide lanes separated by a double yellow centerline. Shoulders vary from about 1 to 2 feet wide. The speed limit posted near the intersection with Route 66 is 35 miles per hour, although further away it increases to 45 miles per hour. At the intersection with Route 66 there is a church, automobile repair shop, small office building, and the town center green for Columbia. Land uses on Route 87 further from the intersection are predominantly single family homes and farms, as well as a school slightly north of Route 66. Passing is permitted along some stretches of Route 87.

Route 207 is a state maintained two lane highway oriented in a generally east/west direction from Route 85 in Lebanon to Route 97 just west of the Willimantic River in Sprague. The highway is approximately 28 to 30 feet wide providing in general

a 12 foot lane for each direction of travel and shoulders of varying widths. In the vicinity of Route 85 the predominant land use is single family homes.

Kinney Road is a town road approximately 19 feet wide with a single yellow centerline. The approach to Route 85 operates under stop sign control. It provides access for the single family homes in the vicinity and the speed limit is posted at 25 miles per hour.

BACKGROUND TRAFFIC

Background traffic is defined as the traffic on the existing roadway network that would exist at the time of the proposed facility's opening even if the development did not take place. Since the development is proposed for staged construction, a design year of 2010 was chosen. The design year is the year in which it anticipated that the facility will be fully constructed and operating normally. The anticipated traffic patterns for the design year are based on the existing traffic patterns.

The State of Connecticut Department of Transportation (ConnDOT) maintains a system of automated traffic counters on state highways and certain other roadways. The ConnDOT counts conducted during July 1999 indicate that Route 66 east of Route 316 carries an Average Daily Traffic volume (ADT) of 11,800 vehicles with peak hour volumes of 861 vehicles and 1,141 vehicles during the a.m. and p.m. peak hours, respectively. Route 85 south of Route 66 carries an ADT of 9,200 vehicles with peak hour volumes of 696 vehicles and 908 vehicles during the a.m. and p.m. peak hours, respectively. Route 316 north of Route 66 carries an ADT of 3,000 vehicles with peak hour volumes of 214 vehicles and 301 vehicles during the a.m. and p.m. peak hours, respectively. Copies of the ConnDOT counts are included in the appendix.

In order to verify and update the ConnDOT data, this office placed automated traffic counters on several local roadways for a period of one week in late November and early December of 2002. The counters were placed on Route 66 west of Loveland Road, Route 85 south of Kinney Road, and Route 316 north of Route 66. The counts

indicate that Route 66 carries an average daily traffic (ADT) volume of 10,254 with peak hour volumes of 728 vehicles during the a.m. peak hour and 976 vehicles during the p.m. peak hour. Saturday volumes were measured at 7,933 vehicles on a daily basis with a peak hour volume of 675 vehicles. Route 85 carries an ADT of 9,651 with an a.m. peak hour volume of 766 vehicles and an afternoon peak hour of 873 vehicles. Saturday volumes were measured at 9,188 vehicles with a peak hour volume of 811 vehicles. Route 316 carried an ADT volume of 4,407 vehicles. Peak hour volumes were measured at 414 vehicles during the a.m. peak hour and 395 for the p.m. peak hour. Saturday volumes were measured at 3,131 vehicles with a peak hour volume of 313 vehicles. The resulting counts are presented in Tables 1, 2 and 3, respectively.

In addition to the automated traffic counts, manual turning movement counts were conducted at several intersections in the vicinity of the site. The intersections counted were Route 66 at Route 85, Route 66 at Route 316, Route 66 at the IGA Plaza driveway, Route 66 at Route 87,Route 85 at Kinney Road and Route 85 at Route 207. The manual turning movement counts were conducted during the morning and afternoon peak commuter hours as well as the Saturday midday peak shopping hours. Copies of the manual turning movement counts are included in the appendix.

All of these counts were utilized to develop volumes for the existing 2004 traffic pattern. A review of the past traffic volumes indicates that the average annual growth rate on Route 66 is under 1% and under 2% on Route 85. These studies are included in the appendix. In addition, it is a rural area with a history of limited growth patterns and no anticipated large developments except for this one. An annual growth rate of

1.5%, for a total of 3%, was applied to the through volumes in front of the site on Routes 66 and 85. The resulting 2004 Existing Traffic volumes are presented in Figures 2, 3, and 4 for the a.m., p.m., and Saturday peak hours, respectively.

The 2010 design year for the study designates the need to grow the traffic volumes from their existing 2004 levels appropriately. The site generated traffic for two approved and partially constructed developments known as Loveland Hills Phase I and Phase II was also added to the existing traffic volumes. Figures 5, 6, and 7 show the resulting 2010 Background Traffic volumes for individual intersection turning movements during the a.m., p.m., and Saturday peak hours.

Table 1 Traffic Volumes Route 66, west of Loveland Road, Hebron, CT

002 ay Total	80	28	13	22	35	93	156	272	370	454	576	559	556	529	527	511	451	356	262	212	117	75	63	6354
11/24/2002 Sunday WB Tot	37	22	9	7	24	24	83	152	188	224	277	271	262	242	280	268	240	185	134	103	9	42	25	3212
111 S EB	43	9	7	7	Ξ	39	73	120	182	230	299	288	294	287	247	243	211	171	128	109	22	33	38	3142
102 ay Total	92	29	32	49	66	164	254	395	484	209	675	595	561	541	598	585	260	464	254	223	318	165	140	7933
11/23/2002 Saturday WB Tot	36 16	7	19	22	47	92	146	214	247	304	347	292	278	270	301	284	252	185	130	121	204	80	61	3962
11/ S; EB	56 33	18	13	27	25	69	108	181	237	303	328	303	283	271	297	301	308	279	124	102	114	85	79	3971
02 / Fotal	44 8	16	20	46	156	477	673	639	482	501	522	546	533	662	816	851	860	699	374	259	254	331	140	9903
11/22/2002 Friday WB Tot	15	5	7	25	112	338	379	351	249	243	258	283	278	349	388	348	337	236	156	114	139	231	29	4931
11/ EB	29	=	<u>ი</u>	51	44	139	294	288	233	258	264	263	255	313	428	503	523	433	218	145	115	100	73	4972 4931
002 Iay Total	72	18	17	34	154	201	693	620	572	524	625	582	592	642	770	863	814	578	391	274	194	127	81	9765
12/19/2002 Thursday WB Tot	26 13	7	-	24	104	358	392	347	332	255	275	285	310	327	342	372	344	264	172	123	83	29	4	4874
12 TF EB	46 14	7	9	19	20	143	301	273	240	269	350	297	282	315	428	491	470	314	219	151	111	90	40	4891 4874
102 day Total	56 32	15	18	43	166	512	692	648	523	493	526	537	555	627	748	849	822	628	402	284	210	160	75	9621
12/18/2002 Wednesday	22 16	4	9	53	120	369	410	313	267	256	277	259	258	302	337	327	353	259	190	130	104	2	33	4715
12 We EB	34	7	ω ;	<u>4</u>	46	143	282	335	256	237	249	278	297	325	411	522	469	369	212	154	106	90	42	4906 4715
002 ay Total	45 22	19	6	47	153	531	728	631	222	265	573	009	614	779	886	926	968	555	361	281	189	131	92	5082 5172 10254
11/26/2002 Tuesday WB Total	18	ი	ω	7 58	107	362	422	341	290	272	290	322	328	408	438	433	407	241	163	124	8	25	22	5172
11 T EB	27 15	10	- (9	46	169	306	290	287	293	283	278	286	371	448	543	489	314	198	157	109	79	54	5082
002 ıy Total	34	15	17	53	144	515	721	647	551	205	502	485	514	618	803	810	797	202	328	216	228	116	20	9201
11/25/2002 Monday WB To	2 5	10	თ (325	701	359	398	333	251	274	240	243	264	332	394	338	345	209	143	101	115	25	21	4583
11/ N EB	23	3	ω ;	21	75	156	323	314	300	228	262	242	250	286	409	472	452	298	185	115	113	64	49	4618 4583
Time Begin	12:00am 1:00	2:00	3:00	4:00	00:0	00:9	00:7	8:00	00:6	10:00	11:00	12:00pm	1:00	2:00	3:00	4:00	5:00	00:9	7:00	8:00	0:00	10:00	11:00	Total

Table 2
Traffic Volumes
Route 85, south of Kinney Road, Hebron, CT

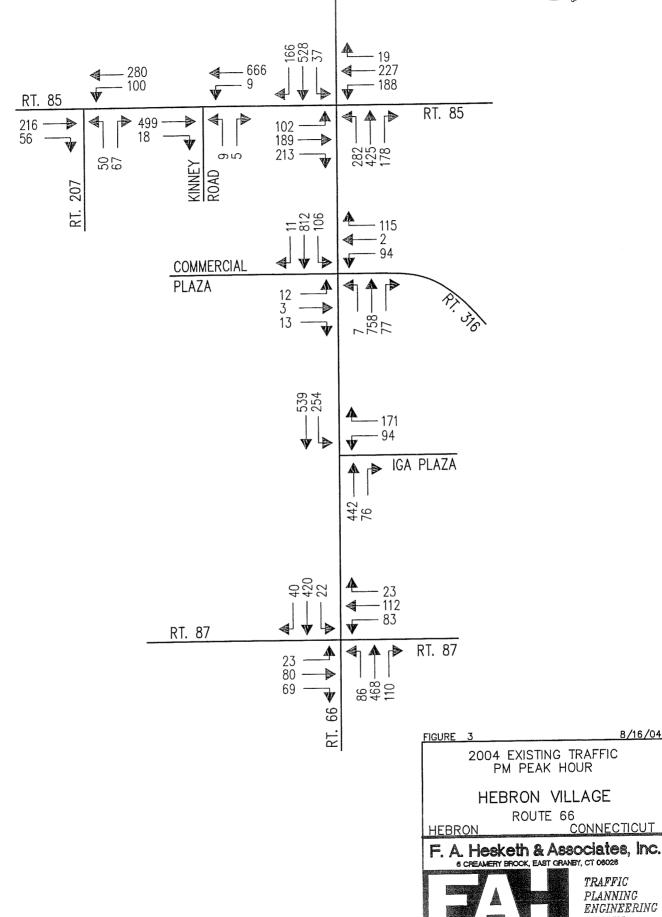

	11/2	11/26/2002	2	12/	12/18/2002	2	12	12/19/2002	02	7	11/22/2002	22	7	11/23/2002	02
Time Begin	Tues NB SB	esday B T	lay Total	We.	Wednesday 3 SB Tot	day Total	NB T	Thursday SB To	ay Total	NB L	Friday SB T	/ Total	S NB	Saturday SB To	ay Total
				;			,		ļ						
12:00am				55	13	41	56	36	65	22	22	44	22	70	127
1:00				10	7	21	5	22	27	5	48	23	28	35	63
2:00				12	Ŋ	17	13	6	22	7	4	15	29	-	40
3:00				က	7	10	10	9	16	5	7	12	21	7	23
4:00				33	15	48	27	7	38	36	5	41	52	0	52
2:00				95	22	147	108	61	169	101	33	134	9/	14	90
00:9				432	136	268	433	126	559	372	94	466	113	17	130
7:00				583	172	755	266	200	992	585	162	747	174	9/	250
8:00				407	237	644	389	216	605	401	210	611	307	157	464
00:6				267	192	459	264	202	466	268	209	477	442	254	969
10:00				227	205	432	279	235	514	268	166	434	565	223	788
11:00				222	227	449	295	284	629	242	220	462	479	332	811
12:00pm				217	237	454	274	238	512	263	237	200	450	333	783
1:00				247	264	511	269	286	555	246	263	509	375	274	649
2:00				279	322	601	316	293	609	270	306	576	380	272	652
3:00		459	781	359	416	775	311	408	719	319	432	751	427	245	672
4:00		501	837	374	499	873	339	474	813	387	477	864	394	229	623
2:00		498	804	311	514	825	342	473	815	362	489	851	268	363	631
00:9		347	592	319	389	708	279	360	639	324	360	684	265	295	260
7:00		251	442	164	307	471	199	270	469	174	252	426	112	163	275
8:00		194	300	125	213	338	88	199	287	147	141	288	134	128	262
9:00	78	170	248	109	171	280	91	141	232	112	160	272	94	134	228
10:00		93	144	56	122	178	53	83	142	102	119	221	87	101	188
11:00		26	88	36	20	98	35	48	83	99	87	153	22	74	131
1040	(Ç	000	0	1 1	3	i i	0	010	C C	1	i L	(0	0
- 01al	7 /991	506	4236	4906 4/85	4/x2	9691	5011 4690	4690	9701	5088 44/3	4473	9561	5386 3802	3802	9188

Table 3
Traffic Volumes
Route 316, north of Route 66, Hebron, CT

8	otal	43	21	15	4	∞	7	26	61	153	189	216	296	ì	707	216	195	185	178	132	122	113	29	59	34	22	2569
11/24/2002 Sunday	SB To	16	ω	2	4	4	5	17	35	98	84	113	151	Ó	ر ک	108	93	92	83	52	22	53	31	21	16	80	1235
11/2 12/2	NB S	27	13	10	0	4	7	6	26	29	105	103	145	,	7	108	102	93	92	80	65	09	36	38	18	4	1334 1
25 ^	r otal	21	17	16	12	4	19	44	105	139	241	235	313	0	707	248	226	213	224	226	168	122	79	80	99	21	3131
11/23/2002 Saturday	SB	6	2	7	9	7	12	58	62	90	133	115	148	9	2	106	104	66	120	107	65	49	36	27	53	22	492
11/2	NB S	12	12	ത	9	7	7	15	43	49	108	120	165		761	142	122	114	104	119	103	73	43	53	37	29	1639 1492
02	[otal	17	9	9	ω	9	47	230	392	223	191	168	163	i	107	210	371	338	345	348	281	163	94	83	28	52	4057
11/22/2002 Fridav	SB	က	က	~	7	4	30	98	182	124	111	82	84	3	2	92	239	197	163	124	120	63	38	33	27	25	1969
11,	N B B	14	က	2	9	2	17	132	210	66	80	83	79	9	33	115	132	141	182	224	161	100	56	56	31	27	2088
25	Total	7	2	2	4	ω	51	234	400	244	129	197	247	1	C17	242	359	337	309	302	271	212	124	83	47	26	4062
12/19/2002 Thursday	SB	က	7	~	~	9	59	96	187	144	73	106	126	č	4	116	204	200	134	117	115	101	38	38	21	10	1962
12/ Th	NB S	8	က	4	က	7	22	138	213	100	56	91	121	3	7	126	155	137	175	185	156	111	86	45	26	16	2100 1962
)2 3	Total	19	4	က	က	∞	41	216	414	250	196	191	191	3	7	184	338	422	346	342	273	223	161	106	26	37	4243
12/18/2002 Wednesday	SB	4	7	~		9	24	83	193	147	111	105	95	9	82	84	201	234	155	161	132	8	90	45	26	16	2081
12/ Wed	NB S	15	7	7	7	7	17	127	221	103	82	86	66	7	=	103	137	188	191	181	141	133	101	64	30	21	2162 2
02 ×	Total	16	12	5	2	2	65	232	395	212	228	212	235	C L	007	253	441	339	355	395	230	218	133	86	53	32	4407
11/26/2002 Tuesday	SB	4	4	0	7	4	35	103	198	135	118	104	120	,	120	119	272	176	159	197	100	88	20	34	25	4	2181
7 -	NB	12	∞	2	က	_	30	129	197	77	110	108	115	4	200	134	169	163	196	198	130	130	83	52	28	18	2226 2181
25	Total	7	4	7	4	^	09	220	384	235	229	168	198	0	000	211	340	354	312	286	234	152	114	73	45	25	3859
11/25/2002 Monday	SBT	7	-	~	7	2	31	87	180	146	127	82	101	Š	0	110	198	191	153	114	103	64	40	31	20	ω	881
11/2 M	NB S	5	က	_	2	7	29	133	204	83	102	86	26	7	<u>†</u>	101	142	163	159	172	131	88	74	42	22	17	1978 1881
E.	Begin	12:00am	1:00	2:00	3:00	4:00	5:00	00:9	7:00	8:00	00:6	10:00	11:00	0.0	14.vop11	1:00	2:00	3:00	4:00	5:00	00:9	7:00	8:00	00:6	10:00	11:00	Total

H:\TRAFFIC\MOVEMENT\new\02225MD.dwg, Model, 8/20/2004 11:34:50 AM

NOT TO SCALE

H:\TRAFFIC\MOVEMENT\new\02225MD.dwg, Model, 8/20/2004 11:34:59 AM

NOT TO SCALE

DESIGN

8/16/04

HEBRON VILLAGE

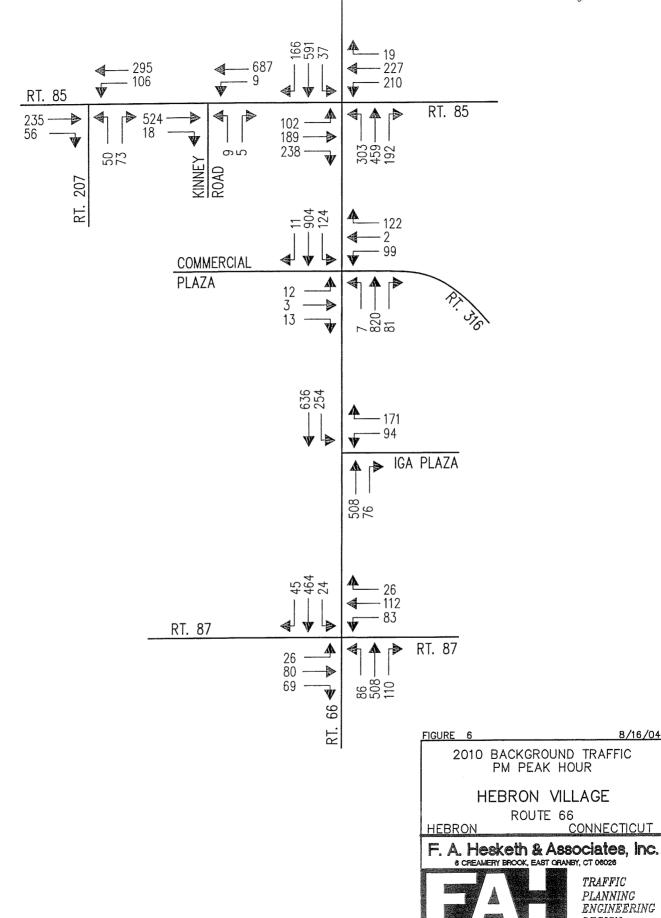
ROUTE 66

CONNECTICUT

F. A. Hesketh & Associates, Inc.

TRAFFIC
PLANNING
ENGINEERING
DESIGN

8/16/04


HEBRON VILLAGE

ROUTE 66

F. A. Hesketh & Associates, Inc.

TRAFFICPLANNING ENGINEERING DESIGN

H:\TRAFFIC\MOVEMENT\new\02225MD.dwg, Model, 8/20/2004 11:35:53 AM

NOT TO SCALE

8/16/04

PLANNING ENGINEERING DESIGN

TRAFFIC

NOT TO SCALE

F. A. Hesketh & Associates, Inc. of CREAMERY BROOK, EAST GRANBY, CT 08028

SITE GENERATED TRAFFIC

Estimating the amount of traffic expected at a new land use involves a study to determine the amount of traffic that has been recorded at similar land uses that were constructed in the past and that have operated for a sufficient period of time to have a stabilized and consistent pattern. In 1976, the Institute of Transportation Engineers (ITE) published a compilation of studies gathered from traffic engineers, planners and public officials throughout the country at various land uses. That document, entitled *Trip Generation* was updated several times, most recently in 2003, and provides traffic engineers and planning officials with a single document and guide on trip generation rates for many land uses and building types. The seventh edition (2003) contains considerably more data than all previous editions, with a database of more than 4,250 individual trip generation studies. The report is intended for use in estimating the number of trips that may be generated by a specific building or land use.

Trip Generation utilizes regression equations to compute the 24-hour 2-way volumes and peak hour volumes produced by a given traffic generator. These volumes are then split by ratios representing entering and exiting traffic. Trip Generation was utilized for each of the individual land uses. The traffic generated by the individual uses was computed and the totals added together. The trip generation worksheets are included in the appendix.

Not every visit made to the site is expected to be a separate, unique trip. A primary trip is made for the specific purpose of visiting a particular land use. It is likely

that people already arriving at the site for one use will also utilize other on-site facilities. For example, someone coming to work in the office for the day might get breakfast or lunch at the restaurants and stop at the supermarket at the end of the day before leaving the site, resulting in a single trip for three uses. In order to account for this decrease in outside trips arriving at the site, a multiple use adjustment reduced the site generated traffic by 10% to determine the anticipated driveway volumes as presented in Table 4. Based upon this analysis, we would estimate that the proposed development will generate a total of 670 trips during the a.m. peak hour, made up of 445 entering trips and 225 exiting trips, and a total of 1,278 trips, made up of 562 entering and 716 exiting trips are expected during the p.m. peak hour. The Saturday peak hour volume is projected to be a total of 1,201 trips including 637 entering and 564 exiting trips.

Not all of the site generated traffic will be new to the existing roadway network and can be considered pass-by trips. Pass-by trips are trips made as intermediate stops on their way from an origin to a primary trip destination. Pass-by trips are attracted from traffic passing the site on an adjacent street that provides direct access to the generator. These trips do not require diversion from another roadway and result from traffic that is already passing the site. An example of this type of trip is the stop on the way home from employment to purchase gas and then continuing directly home upon the completion of the purpose. According to ITE, this traffic may be quite high depending on the use and location of the site. Pass-by rates for retail uses have been observed as high as 60% to 70% of the driveway volumes. ConnDOT limits pass-by traffic to a maximum of 20% of the site generated traffic or 10% of the ambient traffic,

whichever is lower. The calculations for pass-by traffic are presented in Table 5. The pass-by traffic is subtracted from the driveway volumes to calculate the new site generated traffic, which is the traffic generated by the development that will be new to the existing roadway network. These volumes are summarized in Table 6.

A gravity model analysis was performed to determine the anticipated trip distribution of the site generated traffic. Data for all towns within 10 miles of the site was utilized in the analysis. This analysis correlates a town's population with the time it would take to drive from that town to the proposed development in order to determine the rate of usage. This analysis is included in the appendix. The resulting distribution is presented in Figure 8, and indicates that 40% of the site generated traffic will originate along Route 66 to the west, 20% along Route 66 to the east, 20% along Route 85 to the south and 10% along Route 85 to the north. The remaining traffic was distributed to the local roadways in general accordance with the gravity model analysis and based on having 70% of the anticipated traffic utilizing the Route 66 access roadway with the remaining 30% utilizing the Route 85 access.

The site generated volumes were then applied to the roadway network following the distribution pattern in Figure 8, resulting in the volumes presented in the Site Generated Traffic Figures 9, 10, and 11 for the a.m., p.m., and Saturday peak hours. This traffic was then added to the appropriate peak hour 2010 Background Traffic in order to determine the 2010 Combined Traffic volumes for the a.m., p.m., and Saturday peak hours as shown in Figures 12, 13, and 14, respectively.

Table 4
Site Generated Traffic
Hebron Village

				AM			PM		S	aturda	>
			Pe	ak Ho	ır	ď	ak Ho	ur	P	eak Ho	<u> </u>
Land Use	Size Units	ADT	Enter Exit Tota	Exit	Total	Enter	inter Exit Total	Total	Enter	ter Exit To	Total
Office	153,000 s.f.	1,851	232	32	264	43	207	250	28	24	52
General Retail	51,000 s.f.	3,651	52	33	82	161	175	336	242	223	465
Supermarket	35,000 s.f.	3,735	62	40	102	208	199	407	227	219	446
Restaurant	7,500 s.f.	954	45	41	98	20	32	82	94	56	150
Health Club	35,000 s.f.	1,153	18	24	42	72	70	142	46	45	91
Light Industry	75,000 s.f.	523	61	∞	69	6	65	74	9	2	
Residential	123 units	1,258	<u>24</u>	72	96	81	48	129	<u>65</u>	22	120
Total		13,125	494	250	744	624	962	1,420	202	627	1,335
multiple use adjustment (-10%)	istment (-10%)		-49	-25	-74	-62	-80	-142	-71	-63	-134
Total			445	225	029	562	716	1,278	637	564	1,207

Table 5
Pass-by Traffic Calculations
Hebron Village

calculations based on -10% of ambient traffic volumes

calculations based on -20% of retail generated traffic

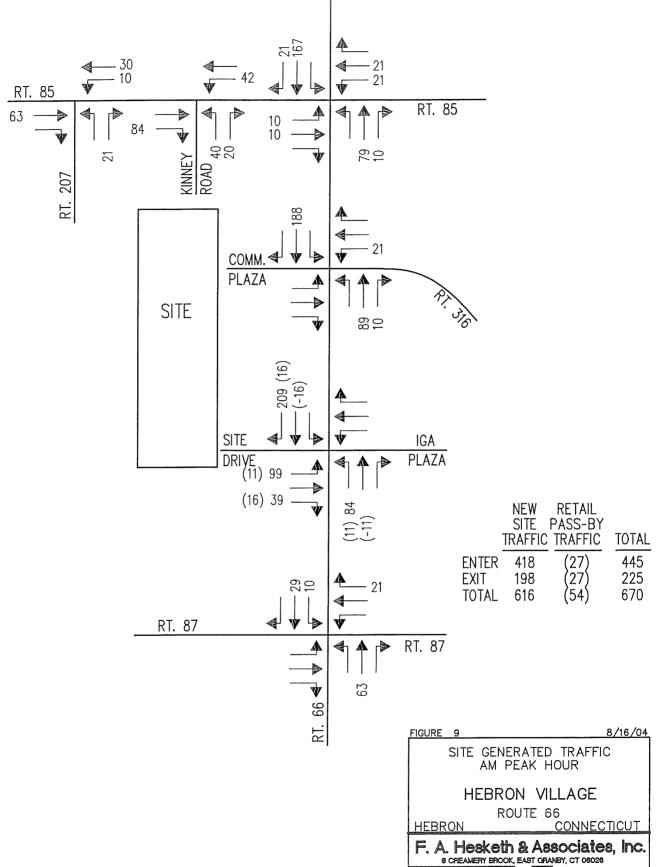
Pass-by Traffic <u>enter</u> <u>exit</u> <u>total</u>	retail generated traffic: 273 -27 -54	retail generated traffic: 825 -82 -164	retail generated traffic: 1,061 -106 -106
total	-194	-299	-222
Pass-by Traffic <u>exit</u>	76-	-150	<u>-</u> 1 11
Pa enter	26-	-150	17
ambient <u>traffic</u>	1,940	2,991	2,221
Peak Hour	AM Peak Hour	PM Peak Hour	Saturday Peak Hour

Used in this study.

Table 6
New Site Generated Traffic
Hebron Village

	Pe	AM eak Ho	ur	Pe	PM eak Ho	ır		aturda ak Ho	- 8
Traffic Source	<u>Enter</u>	Exit	<u>Total</u>	<u>Enter</u>	Exit	<u>Total</u>	<u>Enter</u>	<u>Exit</u>	<u>Total</u>
Total site generated traffic Pass-by traffic	445 <u>-27</u>	225 <u>-27</u>	670 <u>-54</u>	562 <u>-82</u>	716 <u>-82</u>	1,278 <u>-164</u>	637 <u>-106</u>	564 <u>-106</u>	1,201 <u>-212</u>
New Site Generated Traffic	418	198	616	480	634	1,114	531	458	989

CONNECTICUT

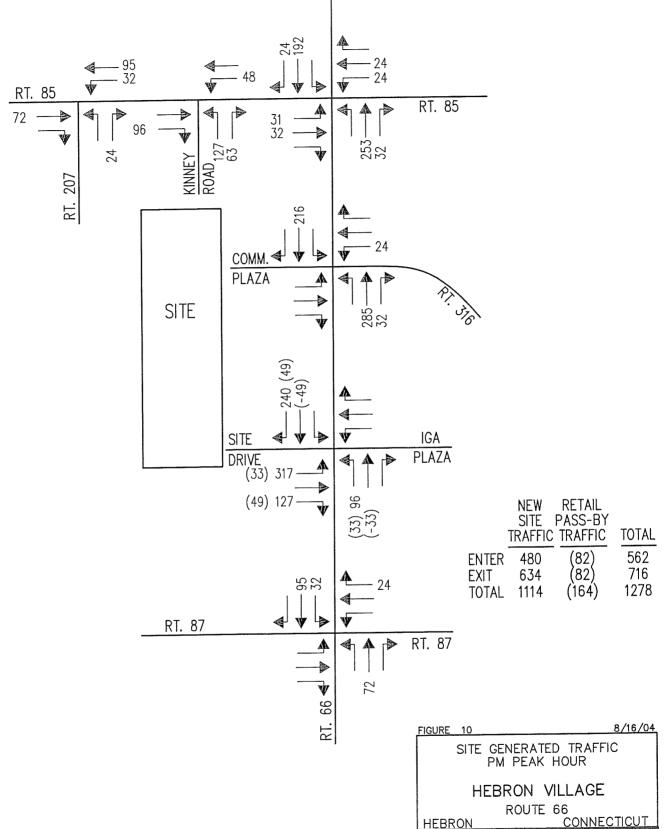

TRAFFIC

PLANNING ENGINEERING DESIGN

NOT TO SCALE

F. A. Hesketh & Associates, Inc. o Creamery Brook, East Gramby, Ct 06026

HEBRON

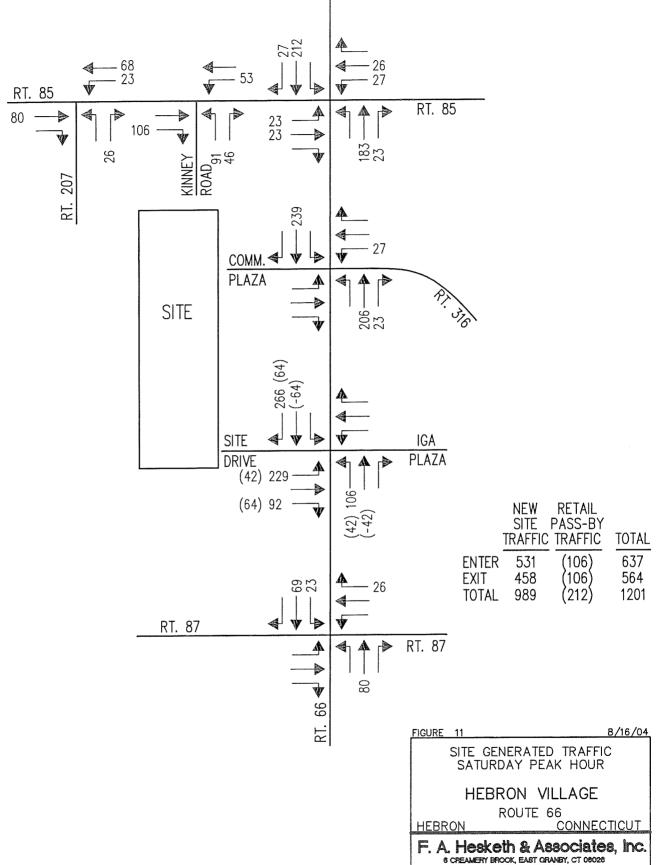


H:\TRAFFIC\MOVEMENT\new\02225MD.dwg, Model, 8/20/2004 11:36:34 AM

NOT TO SCALE

TRAFFIC

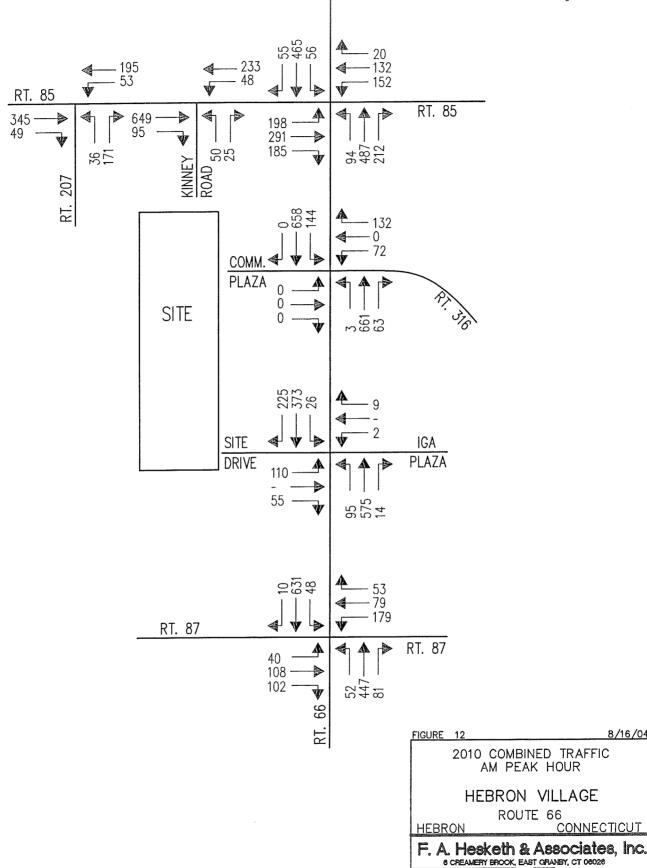
PLANNING ENGINEERING DESIGN



H:\TRAFFIC\MOVEMENT\new\02225MD.dwg, Model, 8/20/2004 11:36:44 AM

TRAFFIC
PLANNING
ENGINEERING
DESIGN

NOT TO SCALE


F. A. Hesketh & Associates, Inc.

H:\TRAFFIC\MOVEMENT\new\\02225MD.dwg, Model, 8/20/2004 11:36:57 AM

NOT TO SCALE

TRAFFIC
PLANNING
ENGINEERING
DESIGN

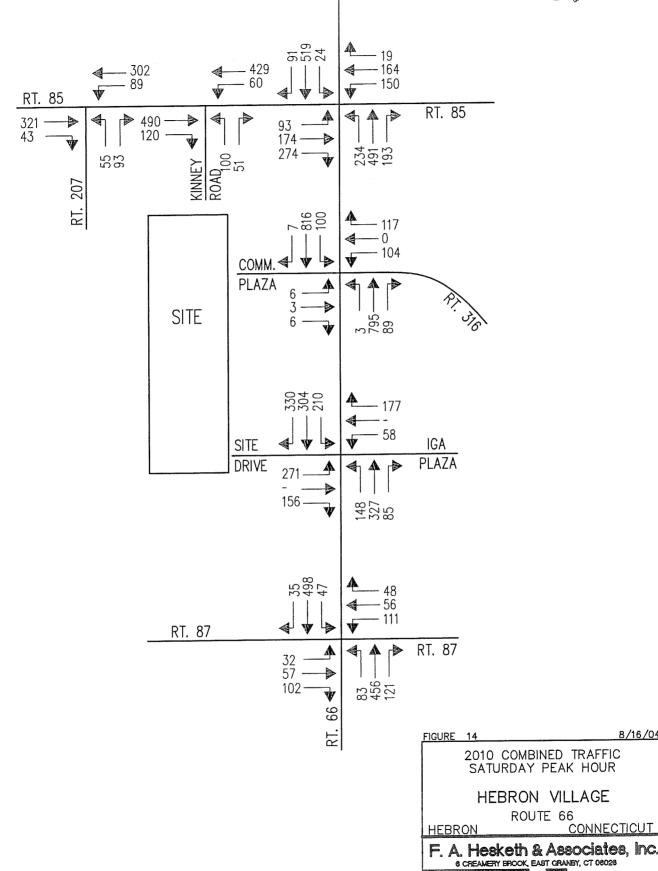
H:\TRAFFIC\MOVEMENT\new\02225MD.dwg, Model, 8/20/2004 11:37:09 AM

8/16/04

TRAFFIC PLANNING ENGINEERING

DESIGN

NOT TO SCALE


H:\TRAFFIC\MOVEMENT\new\02225MD.dwg, Model, 8/20/2004 11:37:21 AM

8/16/04

F. A. Hesketh & Associates, Inc.

TRAFFIC PLANNING ENGINEERING DESIGN

H:\TRAFFIC\MOVEMENT\new\\02225MD.dwg, Model, 8/20/2004 11:37:31 AM

B/16/04

TRAFFIC PLANNING ENGINEERING

DESIGN

TRAFFIC IMPACT

In order to determine the traffic impact of the proposed development, capacity analyses were conducted for the 2010 background and combined traffic volume conditions as well as the combined traffic volumes with the proposed improvements. The analyses utilized techniques presented in the "2000 Highway Capacity Manual" (HCM) (Special Report No. 209), published by the Transportation Research Board. These analyses were conducted to determine the operational effectiveness of each of the intersections studied.

For signalized intersections, the total capacity of the intersection is computed on a movement-by-movement basis. This represents the maximum number of vehicles that can utilize the intersection during an hour. A comparison with the total number of vehicles attempting to use the intersection yields the volume-to-capacity ratio (v/c), which is equivalent to the percentage of capacity utilized during the peak hour. As the v/c ratio approaches 1, the intersection nears capacity. A v/c ratio greater than 1 indicates that some cars are unable to proceed through the intersection and will be stored on an approach. In addition, the Level of Service (LOS) is determined for each of the intersections. Level of Service is a measure of the delay time experienced by stopped vehicles at the intersection. Level of Service is rated on a scale from A to F, with Level of Service A representing a delay of less than 10 seconds per vehicle, and Level of Service F representing a delay of more than 80 seconds per vehicle.

The Level of Service criteria for minor street stop controlled intersections are somewhat different from the criteria used for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from different kinds of transportation facilities. Level of Service is computed for the stopped approaches and for the main street left turns only. Through traffic is considered to have minimal delay. The Level of Service criteria with respect to delay for signalized and unsignalized intersections is shown in the following table:

LEVEL OF SERVICE CRITERIA

LEVEL OF SERVICE	SIGNALIZED AVERAGE TOTAL DELAY (SEC/VEH)	UNSIGNALIZED AVERAGE TOTAL DELAY (SEC/VEH)
LEVEL OF SERVICE		
Α	<u>≤</u> 10	<u>≤</u> 10
В	>10 and <u><</u> 20	>10 and <u><</u> 15
Ċ	>20 and <u><</u> 35	>15 and <u><</u> 25
D	>35 and <u><</u> 55	>25 and <u><</u> 35
F	>55 and ≤80	>35 and <u><</u> 50
F	>80	>50

The analysis was conducted utilizing the computer analysis program called SYNCHRO, which is based upon the analysis techniques provided in the Highway Capacity Manual. This program is used to analyze intersections on a system wide basis. The results are included in the appendix, summarized in Table 7, and discussed here. The SYNCHRO program automatically computes lane queues as it performs the capacity analysis for signalized intersections. The results are presented in Table 8.

Route 66 at Route 85

This is an existing signalized four way intersection with Route 66 oriented in the east/west direction with Route 85 oriented in the north/south direction. The intersection provides two lanes on each of four approaches consisting of an exclusive left turn lane and a shared through/right turn lane. Results of the analysis for the background traffic volume conditions indicate that a LOS C is provided during the a.m. and Saturday peak hours, and a LOS E is provided during the p.m. peak hour. A review of the analysis indicates that several of the individual movements experience a LOS F with delays of more than 100 seconds and v/c ratios well above 1.0 during the p.m. peak hour.

With the addition of the site generated traffic, the a.m. peak hour will operate at a LOS D, the p.m. peak hour will operate at a LOS E and the Saturday peak hour will operate at a LOS F. The analysis shows that one or more of the individual turning movements during peak hours would experience a LOS F with lengthy delays.

In order to provide for the orderly flow of traffic, improvements are proposed to provide an additional eastbound through lane and an additional westbound though lane. Widening is proposed on the northbound approach to provide an exclusive left turn lane, a single through lane and a dedicated right turn lane. The southbound approach will remain in its current configuration. An analysis of the intersection with these improvements indicates that the a.m. and Saturday peak hours it will operate at a LOS B while the p.m. peak hour will operate at a LOS C.

Route 66 at Route 316

This is an existing signalized intersection with Route 66 oriented in the east/west direction with Route 316 approaching from the north. A minor commercial driveway approaches from the south opposite Route 316. The Route 66 approaches are striped for a single 15 foot wide lane with a 5 foot shoulder on the eastbound approach and a 6 foot shoulder on the westbound approach. Route 316 provides a single lane approach as does the commercial driveway. The analysis indicates that the intersection operates at a LOS B or better during peak hours under the background traffic volume conditions.

An analysis of the combined traffic volume conditions indicates that a LOS B is maintained during the a.m. peak hour and that a LOS C is provided during the Saturday peak hour. However, the p.m. peak hour will operate at a LOS F. In order to offset the impact of the site generated traffic, it is proposed to widen and restripe Route 66 to provide two shared lanes on each approach. An analysis of the combined traffic volumes with the proposed geometry indicates that the intersection will operate at a LOS B or better during peak hours.

Route 66 at the Site Drive

This is an existing unsignalized "T" intersection with Route 66 oriented in the east/west direction and the IGA Shopping Plaza driveway approaching from the north. The Route 66 eastbound approach provides a single through lane and a dedicated left turn lane. The westbound approach is a single lane approach. The IGA driveway provides separate lanes for left and right turning vehicles and operates under stop sign

control. In the background condition all movements will be provided a LOS C or better during the a.m. peak hour. During the p.m. and Saturday peak hours, all movements have a LOS C except for the southbound left turn which experiences high delays and operates at a LOS F.

The proposed site access roadway will be located on the south side of Route 66 opposite the existing IGA. The northbound approach is proposed to provide an exclusive left turn lane and a shared through/right turn lane. The IGA driveway will be restiped to provide a dedicated left turn lane and a shared through/right turn lane. An analysis of the intersection with the combined traffic volumes and the existing geometry operating under stop sign control indicates that left turn movements from both site driveways will operate at a LOS F during peak hours.

Due to the poor level of service a signal warrant analysis was performed for the intersection to see if a traffic signal is warranted at this location. The warrant analyses indicate that a signal is warranted at this location. A detailed discussion of the analysis is presented in a subsequent section of this report. In order to provide for an orderly flow of traffic Route 66 will be widened to provide an exclusive westbound left turn lane and a shared through\right turn lane. The eastbound approach will be widened to provide a dedicated left turn lane, a single through lane and a dedicated right turn lane. An analysis of the intersection operating under signalized control indicates that a LOS B will be provided during the a.m. and Saturday peak hours while the p.m. peak hour will operate at a Los C.

Route 66 at Route 87

This is an existing signalized intersection with Route 66 oriented in the east/west direction with Route 87 oriented in the north/south direction. Although the intersection is striped for all single lane approaches, the eastbound approach on Route 66 is approximately 30 feet wide and the westbound approach is 18 feet wide providing bypass capability for turning vehicles on both approaches. An analysis of the background traffic volume conditions indicates that the intersection operates at LOS C during the a.m. peak hour and at a LOS B during the p.m. and Saturday peak hours. The addition of the site generated traffic does not have a significant impact on the operations or LOS at the intersection.

Route 85 at Kinney Road

This is an existing unsignalized "T" intersection with Route 85 oriented in the north/south direction with Kinney Road approaching from the east. All approaches to this intersection are single lane approaches with the westbound Kinney Road approach operating under stop sign control. An analysis of the intersection under the background traffic volumes indicates that the westbound approach operates at a LOS C during all hours. The southbound left turn movement operates at a LOS A during all hours.

The proposed site plans show that Kinney Road will be relocated and reoriented to intersect with the proposed site access roadway that will intersect with Route 85 at the same location as the existing Kinney Road intersection. With the addition of the site generated traffic, the southbound left turn LOS remains the same, but the

westbound traffic experiences higher delays with LOS D during the a.m. peak hour and LOS F during the p.m. and Saturday peak hours. Due to the poor level of service a signal warrant analysis was performed and a signal is warranted. The warrants are discussed later in this report. In order to provide for an orderly flow of traffic, it is proposed to widen Route 85 to accommodate a southbound left turn lane. An analysis of the intersection under the combined traffic volumes with the proposed geometry indicates that a LOS B or better will be provided at all times.

Route 85 at Route 207

This is an existing unsignalized "T" intersection with Route 85 oriented in the north/south direction with Route 207 approaching from the west. Each approach provides a single lane. An analysis of the background traffic volume conditions indicates that the southbound left turning movement will operate at a LOS A at all times while the westbound leg provides a LOS B during a.m. and Saturday peak hours and a LOS C during the p.m. peak. When the site traffic is added to the intersection, the analysis shows that westbound traffic will operate at a LOS C during peak hours.

The calculated queue lengths at each of the signalized intersections are presented in Table 8. A review of the existing ConnDOT Right of Way plans indicates that sufficient right of way exists at all locations to provide the required queue lengths.

Table 7
Level of Service Summary

	Peak		ckground affic	2010 Co with Impro	
Intersection	<u>Hour</u>	<u>LOS</u>	<u>delay</u>	LOS	<u>delay</u>
Route 66 &	AM Peak	С	27.1	В	19.1
Route 85	PM Peak	Ε	70.8	С	24.8
	SAT Peak	C	21.7	В	15.9
Route 66 &	AM Peak	Α	9.1	В	11.2
Route 316	PM Peak	В	17.9	В	16.7
	SAT Peak	В	10.1	В	11.9
Rt. 66 &	AM Peak			_	
Commercial Plaza	eastbound left	A	8.9	В	10.6
& Site Drive	southbound left	C	21.4	(signal)	
	southbound right PM Peak	В	12.7		
	eastbound left	В	10.5	С	22.7
	southbound left	F	464.1	(signal)	
	southbound right SAT Peak	С	17.1		
	eastbound left	Α	9.4	В	15.1
	southbound left	F	60.8	(signal)	
	southbound right	В	14.4	(org/idi)	
Route 85 &	AM Peak				
Kinney Road	westbound	С	17.1	Α	5.1
,	southbound left PM Peak	Α	0.3	(signal)	
	westbound	С	22.5	В	10.0
	southbound left	Ä	0.3	(signal)	
	SAT Peak	, ,	0.0	(org.rar)	
	westbound	С	16.9	Α	8.0
	southbound left	Α	0.2	(signal)	
Route 85 &	AM Peak				
Route 207	westbound	В	13.9	С	16.3
	southbound left PM Peak	А	2.0	Α	2.2
	westbound	С	17.0	С	24.7
	southbound left	Α	2.9	Α	3.4
	SAT Peak				
	westbound	В	14.5	С	21.6
	southbound left	Α	2.2	Α	2.9
Route 66 &	AM Peak	С	23.2	С	27.2
Route 87	PM Peak	В	10.8	В	13.3
	SAT Peak	В	10.3	В	11.7

Table 8 Queue Length Summary

	2010	Background Traffic	affic	201	2010 Combined Traffic	ffic
	AM Peak		Saturday Peak	AM Peak	PM Peak	Saturday Peak
Intersection	left / thru / right	left / thru / right				
Rt. 66 & Rt. 85						
eastbound	72 / 272 /	37 / 719 /	31/314/	52 / 145 /	40 / 289 /	24 / 198 /
westbound	65 / 468 /	347 / 373 /	153 / 305 /	77 / 327 / 97	221 / 468 / 4	111/242/25
northbound	153 / 557 /	86 / 476 /	54 / 347 /	104 / 203 / 46	82 / 162 / 54	69 / 143 / 61
southbound	108 / 123 /	233 / 210 /	88 / 128 /	78 / 102 /	168 / 225 /	101 / 141 /
Rt. 66 & Rt. 316						
eastbound	36 / 131 /	43 / 442 /	30 / 190 /	/ 146 /	/ 64 /	/ 148 /
westbound	/ 279 / 13	/ 575 / 16	/ 308 / 17	/ 509 /	/ 270 /	/ 229 /
northbound	/0 /	/ 19 /	/ 17 /	/0 /	/ 18 /	/ 16 /
southbound	/ 29 /	/ 174 /	/110/	/ 68 /	/ 207 /	/ 144 /
Rt. 66 & Site Drive						
eastbound		n/a		8 / 207 / 70	107 / 236 / 0	120 / 177 / 60
westbound				32 / 290 /	51 / 400 /	75 / 304 /
northbound				82 / 0 /	251 / 55 /	256 / 0 /
southbound				2/ 0/	63 / 102 /	40 / 0 /
64 05 40 VocaiV 9 30 40						
At. 60 & Milley Ad.		c/c		/ / / 77	119/	1027
westboalla		ם 		/ 149 /	/ 291 /	/ 579 /
southbound				8 / 42 /	17 / 219 /	16 / 103 /
Rt. 66 & Rt. 87						
eastbound	30 / 396 /	13 / 175 /	16 / 186 /	44 / 425 /	29 / 217 /	7902 / 308 /
westbound	64 / 232 /	41 / 254 /	47 / 208 /	64 / 326 /	44 / 298 /	46 / 245 /
northbound	/ 35 /	/ 83 /	/ 29 /	/ 35 /	/ 420 /	/ 73 /
southbound	/ 142 /	/ 137 /	/ 103 /	/ 152 /	/ 420 /	/ 122 /

SIGNAL WARRANT ANALYSIS

Due to poor levels of service and high delays for turning movements at certain intersections, a signal warrant analysis was performed to determine whether traffic conditions would justify the installation of a traffic signal at each of these intersections. These include the intersections of Route 66 with the IGA driveway and the proposed site access roadway as well as Route 85 with the proposed site access roadway. Four of the warrants listed in the Manual on Uniform Traffic Control Devices (MUTCD) are applicable to conditions at these intersections:

- 1) The "minimum vehicular volume" warrant, which is applied where the volume of intersecting traffic is the principal reason for consideration of installation;
- 2) The "interruption of continuous traffic" warrant, which applies to operating conditions where the traffic volume on the major street is so heavy that traffic on the minor street suffers excessive delay or hazard in crossing the major street;
- 3) The "four hour volumes" warrant, which is intended for application when traffic conditions are such that, during peak travel periods, the minor street traffic suffers undue delay in entering or crossing the major street; and
- 4) The "peak hour volume" warrant, which applies during a single hour, the minor street traffic suffers excessive delay.

The first two warrants are satisfied when, for each of any eight hours of an average day, the minimum traffic volumes specified in the MUTCD are met or exceeded. These minimum volumes apply to the major street (total of both approaches) and to the minor street approach to the intersection. The minimum

volumes are a function of the number of lanes on each approach, the 85-percentile speed of the main road, and the population of the surrounding area. Warrants (3) and (4) are satisfied when the plotted points representing the hourly volume on the major street (total of both approaches) and the corresponding hourly volume on the highest minor street approach lie above the curves shown in the graphs provided in the MUTCD.

In order to do the warrant analyses, the anticipated hourly traffic was determined for each of the intersections. These were based on existing hourly counts and the proposed site traffic distributed throughout the day. The resulting tables are included in the appendix. The four warrant analyses were conducted for each intersection, and these worksheets are also included in the appendix.

The intersection of Route 66 with the proposed site driveway opposite an existing commercial plaza driveway was analyzed. The results indicate that all four warrants are met and the developer proposes to install a signal at this location. In addition, the developer will widen Route 66 in order to provide sufficient pavement width for exclusive turning lanes into the site.

The second site access, located on Route 85 at Kinney Road, was also analyzed. The results indicate that the peak hour warrant and the minimum vehicular volume warrant and the interruption of continuous traffic warrant are met when utilizing the rural warrant volumes. Due to the low levels of service and very high delays experienced by the site traffic at this intersection, as well as the results of the warrant analyses, it is recommended that this intersection be signalized by the developer.

SIGHT LINE ANALYSIS

The Connecticut Department of Transportation has published its requirements for the application of sight distances at intersections and driveways as adopted in December of 2003. In general, the intersection sight distance (ISD) is the available sight distance allowing a driver approaching an intersection to observe the vehicles on the crossing roadway or opposing direction. Basically, the ISD should be sufficiently long for a driver in a fully stopped vehicle at an intersection to complete a turning or crossing maneuver. Therefore, the ISD varies according to the speed of traffic and distance crossed while performing the maneuver. The clear line of sight is measured from a minimum of 15 feet behind the edge of road or traveled way to a point within the road, while the ISD is the line of sight projected along the length of the roadway. The line should be measured at a height of 3 feet 6 inches from the beginning point (driver's eye level) to the end point (object in roadway.) A summary of the guidelines is contained in the appendix.

Our observations at the intersection of Route 66 and the proposed site access roadway indicate that available sight to the east is in excess of 600 feet. This exceeds the current ConnDOT requirement for a design speed of 50 miles per hour. The available sight distance to the west was 390 feet, which meets the ConnDOT requirement for a design speed of 35 miles per hour. It may be necessary to trim back existing tree branches and shrubs that extend into the right of way on the south side of Route 66 nearly to the pavement in order to maintain this sight distance in the future.

The posted speed limit for Route 66 is 35 miles per hour. The existing sight distances for the opposing driveway were observed to be approximately 800 feet to the east and to the traffic signal at Route 316, about 2000 feet to the west. Both distances exceed the requirements for a design speed of 70 miles per hour.

The sight distances along Route 85 at Kinney Road were observed to be 390' to the right, meeting ConnDOT's requirement for a design speed of 35 miles per hour.

This is the school zone area with posted speed limit of 30 miles per hour. The sight distance to the left on Route 85 was observed to be approximately 900 feet, exceeding requirements for a design speed of 70 miles per hour.

TRAFFIC ACCIDENT DATA

The Connecticut Department of Transportation gathers and compiles traffic accident data for all state highways and some major local roadways. A list of accidents occurring in the area from January 1st, 1999 through December 31st, 2001 includes the most recent 3 years of available data. In the appendix are the ConnDOT tables relating the accidents to various conditions including date, time, roadway and weather conditions, collision types, and other variables as well as a short description of each accident. Injuries are reported on a scale of A to C, with A injuries necessitating assistance and C injuries listing complaints. Fatalities are indicated separately. The ConnDOT list of applicable abbreviations and definitions for the accident data is also included in the appendix. A 3 year accident history was compiled for each highway within 500 feet of the intersections analyzed in this study. In addition, ConnDOT maintains a Traffic Accident Surveillance Report (TASR), a list that rates sections of roadway on accident occurrence. The methodology used essentially compares the actual recorded accident rate at an intersection to a calculated critical accident rate based on intersection type and quality control. This accident ratio reaches the critical point when those two numbers are equal and the ratio is equal to or greater than 1.0. Also included in that list is a notation for intersections that are on the state's Suggested List of Surveillance Study Sites, or SLOSSS. The most recent available TASR list is based on data collected from 1998 to 2000. The pertinent sections of the list for each highway in the study are included in the appendix.

The area encompassing the intersections of Route 66 with Route 85 and Route 316 contained a total of 39 accidents during the time period reviewed. Although approximately 44 % of those were rear-end collisions, many of the accidents involved vehicles turning or slowing to turn left at one of the two intersections. The TASR indicates that the accident ratios for Route 66 and Route 85 are 1.11 and 0.78, while the ratios for Route 66 and Route 316 are listed as 0.16 and 0.71. Neither intersection is on the SLOSSS. Previous discussion of the capacity of these intersections indicated that roadway widening to provide additional lanes would lessen delay times and increase the levels of service provided. The inclusion of exclusive turning lanes or shared lanes also would allow the safe storage of vehicles queued for certain movements while permitting other traffic to move around them. This is likely to reduce both the number of rear-end accidents occurring due to vehicles stopped for a turning maneuver as well as the number of turning accidents due to insufficient capacity.

The history of accidents for Route 66 in the vicinity of the proposed site driveway is limited to a single incident each year. All three involve one vehicle turning into or out of a driveway into the path of a vehicle going straight on Route 66. The future traffic signal at the site driveway will aid in reducing the possible occurrence of accidents due to the number of anticipated turning movements at the site. The installation of the signal is also likely to reduce the occurrence of similar accidents at unsignalized intersections nearby because the signal will tend to platoon traffic thus providing longer gaps between the platoons for turning maneuvers.

During the 3 years covered in the study, 6 accidents occurred on Route 85 near Kinney Road. On November 15th, 2000, a fatal accident occurred when a vehicle struck a pedestrian crossing the road in the dark approximately 300 feet north of the intersection in the school zone. The remaining 5 accidents were speeding vehicles skidding on wet, slushy, or oil slicked pavement. Two of the incidents happened within 15 minutes of each other on December 20th, 2000 in snowy conditions. The intersection is listed in the TASR as having a low accident ratio of 0.23. There are no specific measures to be taken as a result of the major accident; however, the signalization of the intersection allows the possibility to provide a pedestrian crossing phase to encourage crossing at the intersection.

CONCLUSION AND RECOMMENDATIONS

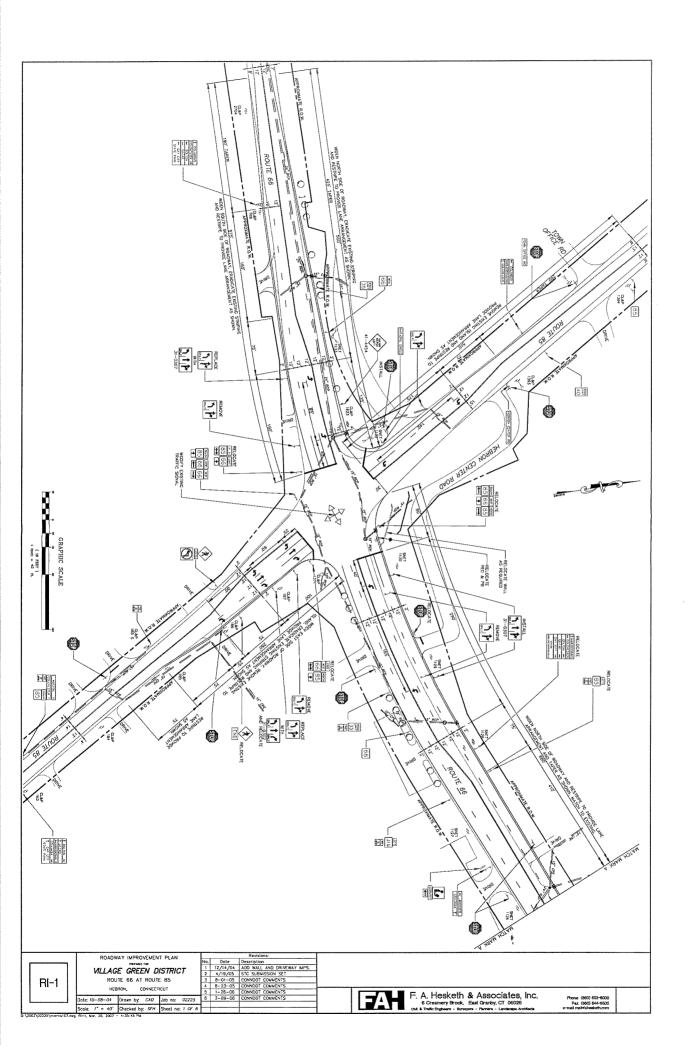
The proposed development for the Horton property in the Village Green District of Hebron, Connecticut between Route 66 and Route 85 calls for a total of 356,500 s.f. of mixed-use buildings and 123 residential units of various types as well as recreational areas, open wetlands, and hiking paths. The site is expected to generate a total of 942, 1,780, and 1,673 vehicle trips during the a.m., p.m., and Saturday peak hours. Vehicle access to the site will be provided through a main driveway on Route 66 and a second driveway approaching Route 85. A third vehicle driveway on Route 85 will enter a parking lot with only 10 spaces and access to hiking trails.

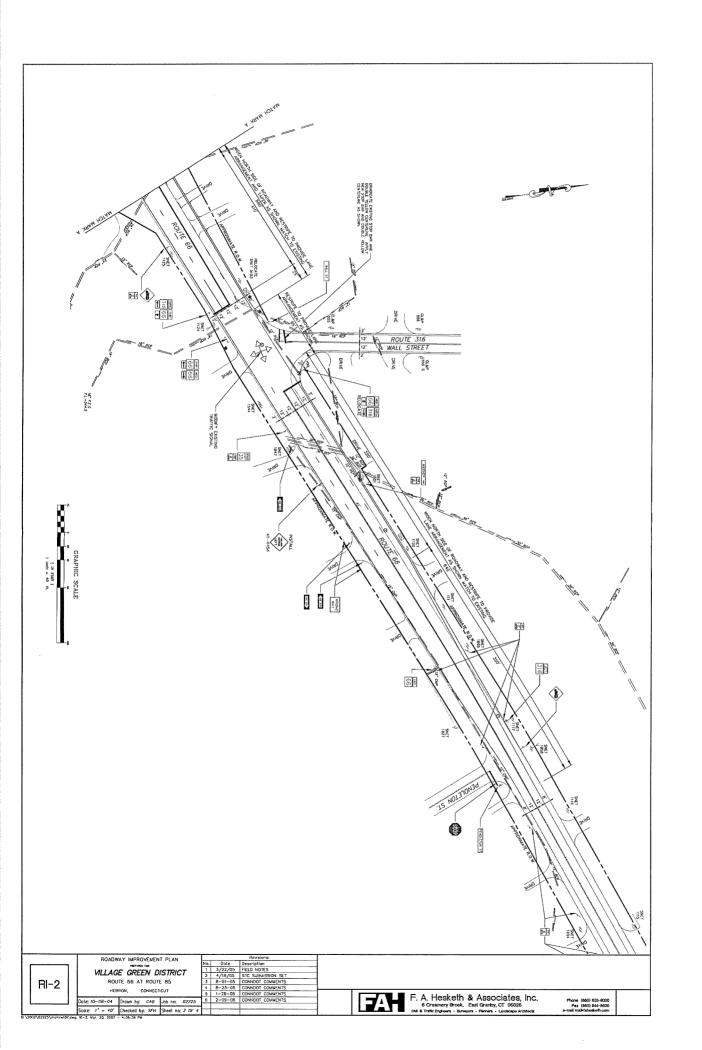
The developer proposes to signalize and construct additional turning lanes at the two main entrances to the site. In addition, Route 66 will be widened for the area between the intersections with Route 85 and Route 316 in order to provide pavement width for improvements at those intersections. With these proposed improvements, the impact to the existing roadway network is minimized. The site driveways are located appropriately with respect to existing intersections and available sight distances. The internal site design will provide redundant accessibility to heavy use retail areas as well as roadway designs to minimize vehicle speeds. Parking areas for most of the public use areas are shared and located to minimize reducing the village aesthetics while still providing convenient access. The design is in general compliance with the Village Green District zoning regulations pertaining to street and parking standards.

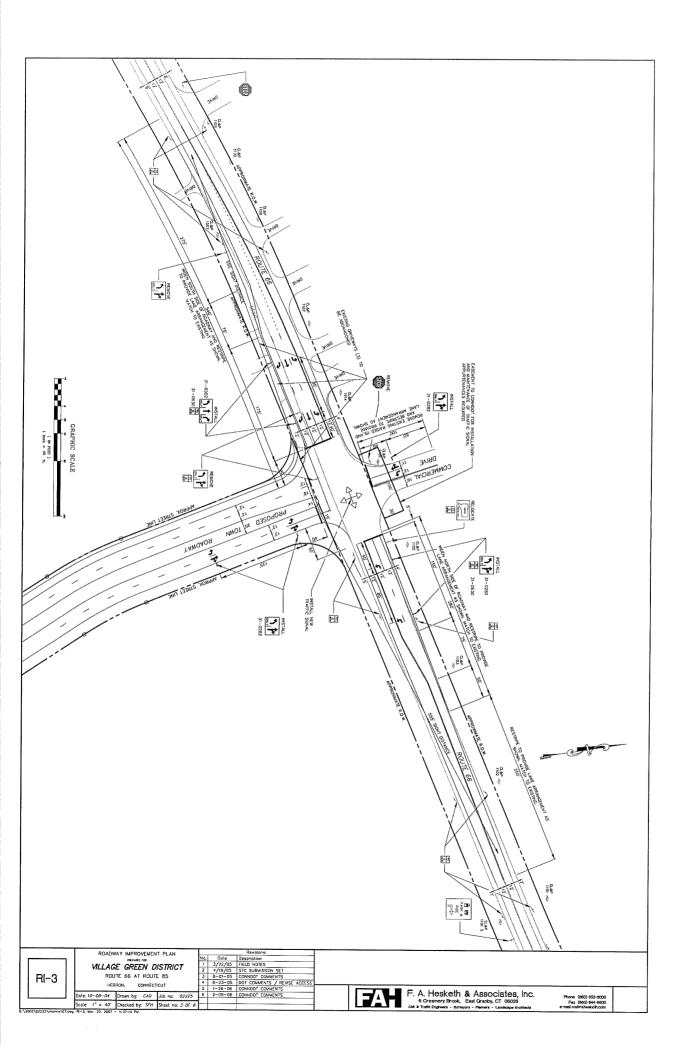
APPENDIX

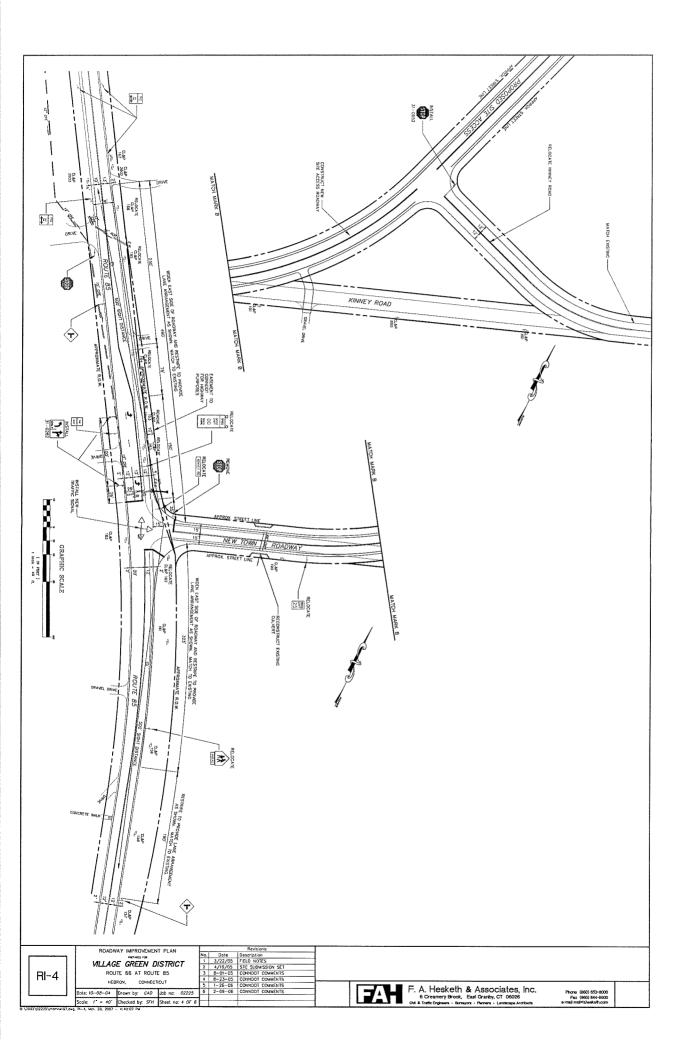
REPORT APPENDIX A

NOTE:


This Traffic Impact Report also included an "APPENDIX A" which consisted of in excess of 100 Pages of technical support data. That data is not included in this version of the Traffic Impact Report provided for convenient review.


That technical data was compiled and reviewed by F.A. Hesketh & Associate and served as the basis for their preparation of the body of attached Traffic Impact Statement.


The referenced technical data is summarized in the final design of the "Roadway Improvement Plan" prepared by F.A. Hesketh & Associates entitled: "Road Improvement Plan VILLAGE GREEN DISTRICT Route 66 at Route 85" Dated 10-08-04 with revisions through 08/23/05 Job #02225 Pages RI-1, RI-2, RI-3, and RI-4


This full report and appendix A complied in full with the Hebron Planning and Zoning's HVG Traffic Impact Statement requirement.

The Roadway Improvement Map is provided herein in lieu of all the supporting technical data.

